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ABSTRACT    

The flow behavior inside the shrouded disk system is of importance in 
appropriate design of turbomachinery cavities and turbine test cell 

hydraulics dynamometer . The turbulent incompressible flow is analyzed 

for the shrouded disk system with axial clearance. The flow core behaves 
as a Batchelor type structure when a weak inflow is imposed on the disk 
cavity. By increasing the inflow, the central core disappears and the 
tangential velocity distribution is changed to Stewartson type structure. 
The central core again reappears by increasing the Reynolds number. The 
moment coefficient of rotary disk depends on superimposed flow rate 
coefficient and dimensionless geometrical parameters. Moment coefficient 
increases with increasing inflow rate while the other parameters remain 
constant. The coefficient is reduced by increasing the Reynolds number. 
Moreover, it increases with both increasing rotary and stationary disks 
axial distance, and decreasing clearance ratio. The experimental results of 
a cavity with radial clearance are used to validate the accuracy of the 
simulation. The results of this analysis and its development can be used in 
the design of turbine test cell hydraulics dynamometers. 

Article history: 

Received : 6 January 2018 
Accepted : 6 October 2018 

Keywords: Rotary & Stationary Disk, Batchelor & Stewartson Flow, Incompressible, Cavity Flow, 
Dynamometer, Moment Coefficient. 

1. Introduction 

Flow analysis inside the cavities is a basic step 
in the design of both turbine test cell hydraulics 
dynamometer (incompressible) and cavity 
design created from gas turbines rotor/stator 
interfaces (compressible). The hydraulics 
dynamometer can be faced with unwanted 
cavitation in the low-pressure regions of 
around the rotation axis. The compressible 
counterparts of cavity flows are the flow of 
secondary air system cooling stream between 
the stator and rotor disks of axial turbines. In 
the later, an improper cavity design may 
affectboth the performance  
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features and shaft resonance parameters. 
The cavity flow also is experienced in 

various locations of turbomachines. In Fig. 1, 
positions 6, 7 and 8 shows the shrouded type 
spaces for cavity flows. Daily and Nece (1960) 
investigated the compressible air flow inside an 
enclosed rotating cavity experimentally and 
numerically. They studied the effect of both 
rotational speed and cavity gap size variations 
on fluid pressure, flow angular speed and rotor 
moment. They observed four flow regimes 
inside the cavity depend on tangential 
Reynolds number and the gap size between the 
rotating and stationary disks. Those are: 

i) Laminar regimes with non-mixed rotor 
and stator boundary layers, G<0.03 and 
Reθ<10 
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ii) Laminar regimes with mixed rotor and 
stator boundary layers  

iii) Turbulent regimes with non-mixed rotor 
and stator boundary layers 

iv) Turbulent regimes with mixed rotor and 
stator boundary layers 

Recently, Hu et al. (2017) refers to above 
four flow regimes and describes the common 
centripetal through-flow from the outer radius 
of the impeller to the impeller eye in 
centrifugal pumps and turbines. They thought 
it has a strong effect on radial pressure 
distribution, axial thrust, and frictional torque. 
In this research, the influence of changing 
circumferential Reynolds number and 
dimensionless axial gap width on flow 
parameters is investigated. Also, the 2-D 
analyzes of previous works are developed to a 
3-D one by introducing the through-flow 
coefficient. 

In literature, there are not much research on 
cavities with the superimposed flow. The 
imposed flow may affect the flow behavior 
inside the cavity considerably by changing the 
boundary layer thicknesses on rotor and stator 
and hence flow regime. Kurokawa and Sakuma 
(1988) mentioned the boundary layers 
interference and transition from laminar to 
turbulent due to the imposed flow. 

Bayley and Owen (1969) analyzed the 
compressible air flow inside the cavity of 
rotating and stationary walls and investigated 
the effect of imposed inflow in the case of 
radial clearance outlet to the atmosphere and 
clearance sizes of G=0.008 and 0.03. They 
used the finite difference method to solve the 
boundary layer equations. They considered non
swirled imposed turbulent flow with Reθ =
3 × 105. The obtained results showed an 
increase of disk moment with increasing 
imposed flow rate because the core rotation is 
lowered. 

Altmann (1972) solved the compressible 
flow cavity with clearances of G=0.056 and 
0.15. It mentioned the negligible effect of disks 
distance on core rotation and disk moment. 
Moreover, it showed that the frictional 
resistance of the rotating disk is considerably 
lowered for increased core rotation values. 

Iacovides and Toumpanakis (1993) solved 
the compressible axisymmetric Navier-Stokes 
equations in a closed cavity. They applied four 
various turbulent models. Those were: one 
equation coupled k-, Sharma and Launder k-, 
k-, and a low Reynolds stress differential 
equation model. The k- and k- predicted the 

laminar boundary layer with good accuracy but 
the Reynolds stress model was not reasonable. 

Haddadi and Poncet (2008) investigated 
incompressible flow with low Reynolds model 
for cavities of small gaps. They showed that 
the previously mentioned four regimes of Daily 
and Nece are applicable for cavities with 
imposed inflow. Moreover, they limited the 
turbulence effects to boundary layers and 
neglected Reynolds stress components in the 
cavity core flow. 

The previous incompressible studies were 
limited to cavities with radial clearance outlet. 
The idea of studying the axial clearance almost 
started from the works of Bayley and Owen 
(1970), and Phadke and Owen (1983). The 
cavities are shrouded, and the outflow passes 
through an axial clearance outlet. They 
investigated the pressure distribution inside the 
cavities for various rotating disk angular 
velocities. Also, they investigated the effects of 
geometry variations, Reynolds number, and 
imposed inflow mass flow rate on disk 
moment. 

In the present work, the incompressible 
turbulent flow of shrouded cavity with an axial 
clearance is analyzed. The cavity gap is large 
and the flow regime is placed in domain iv.  
In a new study, Launder et al. (2010) reviewed 
comprehensively the range of flow inside the 
annular cavities in which one of the disks is 
rotating, and the other is stationary. They 
confined the research to the case where the 
disk spacing is small compared to disk radius; 
it implies no through-flow. At low Reynolds 
numbers, an axisymmetric flow is observed 
with radially outward near the moving wall and 
returning along the stationary one. As the 
Reynolds number is raised, it changes to a 
shear flow with vortices near both disks. At 
higher Reynolds numbers, a complex 
organized structure is dominant in the turbulent 
regime. This last behavior, in the 20th Century 
both experimental and computational studies 
treated as axisymmetric and steady. 
 
Nomenclature 

b rotating disk radius 
𝐶𝑚 moment coefficient 
𝐶𝑝 pressure coefficient 
𝐶𝑤 Imposed flow coefficient  
𝐼1 axial clearance 

𝐼3 radial clearance 

𝐺 =
𝑠

𝑏
 gap ratio 
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𝐺𝑎 =
𝐼1

𝑏
 axial distance ratio 

𝐺𝑟 =
𝐼3

𝑏
 radial distance ratio 

𝑀

= ∫ 𝜏𝑧𝜃

𝑏

0

𝑟(2𝜋𝑟𝑑𝑟) rotating disk moment 

𝑝∗ =
𝑝

1 2⁄ 𝜌Ω2𝑏2
 pressure ratio 

𝑅𝑒𝜃 =
Ω𝑏2

𝜗
 

rotational Reynolds 

number 

R 
radial distance from disc 

centerline 

𝑟∗ =
𝑟

𝑏
 radius ratio 

𝑠 
axial clearance between 

shrouded stator and rotor 
𝑣𝑟 radial velocity 
𝑣𝜃 tangential velocity 
vr

∗ radial velocity ratio 

vθ
∗  tangential velocity ratio 

Z 
axial distance from 

rotating disk 

z∗ =
z

s
 axial distance ratio 

ρ density 

𝜏𝑧𝜃 shear stress 

𝜗 kinematic viscosity 

Ω disc angular velocity 

Superscripts 

∗ dimensionless 

Subscripts 

a   axial 

r radial 

𝜃 tangential 
 

2. Geometry and parameters 
 
Figures 2 and 3 show the physical domain of 
the cavity with axial and radial outlet gaps, 
respectively. The stator is shrouded and the 
rotor is rotating with an angular velocity of . 
The dimensionless axial distance of the two 
disks varies from G = 0.012 to 0.048. The 
dimensionless gap size, radially and axially (Gr 
and Ga), is in a range of 0.006 to 0.012.  

 

 
Fig. 1. Disc cavities inside turbomachines 
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The imposed flow enters from the central eye 
region of the stator and exits through the gaps. 
In this respect, the main flow configuration is 
outward, i.e. to the outer radius, which is called 
centrifugal, unlike the case of centripetal which 
the flow enters through the gaps and exists 
from the central regions of the stator. 
 

 

Fig. 2. Disk system with axial clearance 

 

 

Fig. 3 .Disk system with radial clearance 

 
By considering the moment inserted on the 
rotating disk, the moment coefficient is defined 
as; 

Cm =
𝑀

0.5𝜌Ω2𝑏5
 

(1) 

The flow coefficient is expressed based on the 
imposed flow rate; 

Cw =
𝑄

𝜗𝑏
 

(2) 

Pressure coefficient, which is a determinant 
factor for the cavity flows, can be defined as 
below: 

Cp = p∗(r∗) − p∗(0.92) (3) 

where the p∗ is dimensionless pressure. 
Poncet et al. (2005), suggested considering 

the pressure at  
r∗ = 0.92 as a reference value. 
Radial and axial dimensionless velocities are; 

vr
∗ =

𝑣𝑟

𝑟Ω
 (4) 

vθ
∗ =

𝑣𝜃

𝑟Ω
  

3.Governing equations  
 
The steady incompressible continuity and 
momentum equations govern the cavity flow. 
The turbulent appears in terms of Reynolds 
stresses. 

𝜕(𝑢𝑖)

𝜕𝑥𝑖
= 0 

(5) 

𝜌
𝜕

𝜕𝑥𝑗

(𝑢𝑖𝑢𝑗) = −
𝜕𝑝

𝜕𝑥𝑗

 

+
𝜕

𝜕𝑥𝑗

[𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖

−
2

3
𝛿𝑖𝑗)] 

+
𝜕

𝜕𝑥𝑗

(−𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ ) 

(6) 

In which, 𝛿𝑖𝑗 is the Kronecker Delta. 
By using the Boussinesq assumption, the 
Reynolds stress terms can be expressed as; 

−𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 2𝜇𝑡𝑆𝑖𝑗 −
2

3
(𝜌𝑘)𝛿𝑖𝑗 

(7) 

where, 𝑆𝑖𝑗 is the mean strain rate tensor and 
relates to velocity gradients by; 

𝑆𝑖𝑗 =
𝑢𝑖,𝑗 + 𝑢𝑗,𝑖

2
 

(8) 

4. RNG K- 𝜺 turbulence model  
 

Orszag et al. (1993) suggested the RNG k-ε 
model as an improvement of standard k-ε for 
rapidly strained flows and swirl flows. Also, 
the model better acts in small Reynolds 
number near the walls. The RNG k-ε turbulent 
kinetic energy and dissipation rate equations 
are, 

𝜌
𝜕

𝜕𝑥𝑖

(𝑘𝑢𝑖) =
𝜕

𝜕𝑥𝑗

(𝛼𝑘𝜇𝑒𝑓𝑓

𝜕𝑘

𝜕𝑥𝑗

) + 𝐺𝑘

+ 𝐺𝑏 − 𝜌휀 − 𝑌𝑀 + 𝑆𝐾 

(9) 

𝜌
𝜕

𝜕𝑥𝑖

(휀𝑢𝑖) =
𝜕

𝜕𝑥𝑗

(𝛼𝜀𝜇𝑒𝑓𝑓

𝜕휀

𝜕𝑥𝑗

)

+ 𝐶1𝜀

휀

𝑘
(𝐺𝑘 + 𝐶3𝜀𝐺𝑏)

− 𝐶2𝜀𝜌
휀2

𝑘
− 𝑅𝜀 + 𝑆𝜀 

(10) 

The main difference between the RNG k- 휀 and 
the standard k- 휀 is the additional term of 𝑅𝜀 in 
the 휀 equation given by, 

Rotary disk 

Stationary 

disk shroud 

inlet 

outlet 

z 

 
r 

𝐼1 

Rotary disk 

Stationary disk 

shroud 

inlet 

r 

z 

outlet 

 

 

𝐼3 
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𝑅𝜀 =
𝐶𝜇𝜌𝜂3(1 −

𝜂
𝜂0

⁄ )

1 + 𝛽𝜂3

휀2

𝑘
 

(11) 

where, η = 𝑆 K
휀⁄   and 

𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗 = √𝐺
𝜇𝑡

⁄  (12) 

In previous relations, the turbulent viscosity is; 

𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

휀
 

(13) 

 
5.Method of solution  
 
The incompressible flow inside the cavity of 
rotating and stationary disks is solved using the 
ANSYS FLUENT solver. The pressure-based 
algorithm is used, and the axisymmetric 
rectangular physical domain is analyzed. The 
mass flow inlet and pressure outlet are 
considered as boundary conditions. The 
turbulence intensity of 1% at the inlet and 5% 
at the outlet is applied. The corresponding 
hydraulic diameter is 0.11 and 0.006 m, 
respectively. The rotor wall is rotating and the 
no-slip condition is applied to the shrouded 
stator. The meshing is performed in ANSYS 
WORKBENCH. The selected mesh maintains 
the y+ values about unity on the walls. Figure 4 
shows a segment of the meshed domain. The 
PRESTO   method    is    applied    to   pressure 

equation and for others, the second order 
UPWIND is used. The convergence is accepted 
for the residuals less than 10-7. The working 
fluid is water, and its properties are given in 
Table 1.  
 
6.Assessment of method  
 
To evaluate the method, the numerical results 
of a cavity with radial clearance are compared 
with experimental and numerical results of 
Poncet et al. (2005). They applied the Shear 
Stress Transport (SST) turbulence model in 
their numerical works. In the present work, 
which the results of the pressure coefficient are 
shown in Figs. 5 to 7, the maximum value of 
y+ on rotating and stationary walls is about 
unity. The results are given at Reθ =  4.15 ×
106, and for various flow coefficients of Cw= -
1976, -5929, and, -9881 (centripetal 
throughflow). For the regions away from the 
center of rotation, the results are in good 
agreement with the experimental values. 
Around the cavity axis, some discrepancy is 
observed which can be due to the difference 
between the experimental setup and the 
simulation geometry. Grid independence is 
checked by investigating three different mesh 
densities on the predictions of pressure 
coefficient value shown in Table 2. For the last 
two grid sizes, the difference in 𝐶𝑝 is about 
1.1%.

 

 
Fig. 4 .A segment of the meshed domain 

 

Table 1. Water properties 

Value Unit Property 

10
-6

 m
2
.s

-1
 

Kinematic 

viscosity 

1000 kg.m
-3

 Density 

 
Table 2. Pressure coefficient changes with the cell number for Reθ = 4.15 × 106,  

and Cw = −5929 in r∗ = 0.56 

changes 𝑪𝑷 Cell number Mesh 

- -0.061 15300 Mesh #1 

5.3% -0.0578 25300 
Mesh #2  

(main mesh) 

1.4% -0.057 50600 Mesh #3 
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Fig. 5 .Radial pressure distribution for Reθ =  4.15 × 106 , Cw = −1976 

 

 

Fig .6. Radial pressure distribution for Reθ =  4.15 × 106 , Cw = −5929 
 

 
Fig. 7. Radial pressure distribution for Reθ =  4.15 × 106 , Cw = −9881 
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7. Results  

 
7.1.Pressure coefficient and velocity 

components profiles 
 

The results of the shrouded disk system with 
axial clearance (radial outflow) are presented 
for the water as the working fluid. Selected 
dimensionless radii are 0.44, 0.56, and, 0.80. 
The results are given for Reynolds numbers 
from 10^5 to 10^7 at imposed flow coefficients 
of -1976, -5929, and -9881. In all the cases, the 
checked y+ on the walls is not much above 
unity. 

The pressure coefficient is determined 
from Eq. (3). Figure 8 shows the radial 
pressure coefficient distribution for various 
flow coefficients at Reθ =  4.15 × 106. As it is 
expected, the pressure coefficient decreases 
toward the cavity central region; always 
showing a negative value for Cp. Moreover, in 
a given radius, increasing the imposed 
centripetal flow increases the pressure 
coefficient. In other words, the imposed 
centripetal throughflow causes a more uniform 
pressure in the cavity. In the case with 
𝐶𝑤 = −5929, radial variation of pressure is 
negligible for r<0.55. This shows a Stewartson 
flow structure while that is changed to a 
Batchelor structure for r>0.55. 

Dimensionless tangential and radial 
velocity components, between the two disks 
for the centripetal flow of 𝐶𝑤 = −5929, are 
compared in Figs. 9 and 10, respectively, at 
various radial positions. As it is observed, the 
two wall boundary layers are separated by a 
central rotating core at r*=0.8, while the core is 
going to be diminished in the inner regions of 
the disks. The radial component of velocity, at 
r*=0.8, is outward on rotating disk (Ekman 
layer) and it behaves inward on stationary disk 
(Bodewadt layer). Around the mid and inner 
radial regions, it shows an outward flow in all 
axial positions. 

The effect of changing Reynolds number 
on velocity components is observed in Figs. 11 
and 12 at r*=0.56. By increasing the Reynolds 
number, the radial component of flow velocity 
inside the stator boundary layer is directed 
centripetal, and the flow core again reappears. 
In a given Reynolds number, the flow structure 
is changed from Batchelor to a Stewartson type 
with closing to the central regions. The 
variations are negligible for high Reynolds 
number. The analysis shows structure change 

from Batchelor to Stewartson in the following 
cases; 

 
Fig. 8. Radial pressure coefficient distribution for 
Reθ = 4.15 × 106, G=0.036 and three centrifugal 

throughflow 
 

 
Fig. 9. Mean tangential velocity profile for 

Cw = −5929, G=0.036, Reθ = 106 at three radial 
locations r* 

 

 
Fig. 10. Mean radial velocity profile for Cw =
−5929, G=0.036, Reθ = 106 at three radial 

locations r* 
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1- With closing to central regions, 
2- With increasing of imposed flow rate, 
3- With decreasing the Reynolds number. 

This structure change mainly depends on the 
radial component of velocity. In Stewartson 
structure, the radial component is outward 
(positive) for all axial positions, while that is 
almost zero in Batchelor type. 

 

Fig. 11. Axial profile of mean radial velocity for 
Reθ = 4.15 × 106  and Cw = −5929 

  

Fig. 12. Axial profile of mean tangential velocity 
for Reθ = 4.15 × 106 and Cw = −5929 

 
7.2 Moment coefficient of rotating disk 

 
Rotating disk moment is one of the most 
important parameters of the rotor-stator cavity 
system. In this section, the effect of axial and 
radial clearance ratio, Reynolds number and 
impose flow rate on moment coefficient of the 
rotary disk with radial and axial inflow are 
checked. Moment coefficient of the rotary disk 

is calculated in accordance with Eq.(1). Figures 
13 and 14 show the effect of imposed inflow 
on moment coefficient. The results are given 
for Reynolds numbers from 105 to 107 at mass 
flow coefficients of -1976, -5929, and -9881. 
As it is observed, moment coefficient is 
increased with increasing mass flow of 
imposed inflow. Figures 15 and 16 show the 
effect of gap size on moment coefficient, 
which increases with increasing the gap ratio. 
The effect of axial and radial distance ratio on 
moment coefficient can be observed in Figs. 17 
and 18. By increasing the radial and axial 
distance ratio, the moment coefficient is 
decreased. 
 
 

 
Fig. 13. Effect of flow rate coefficient on moment 

coefficient in cavity with axial clearance for 
G = 0.012 and Ga = 0.012 

 
 

 
Fig. 14. Effect of flow rate coefficient on moment 
coefficient in the cavity with radial clearance for 

G = 0.012 and Gr = 0.012 
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Fig. 15. Effect of gap width ratio on moment 

coefficient in the cavity with axial clearance for 
Ga = 0.012 and Cw = −5929 

 
Fig. 16. Effect of gap width ratio on moment 

coefficient in the cavity with radial clearance for 
Gr = 0.012 and Cw = −5929 

 

 
Fig. 17. Effect of axial distance ratio on moment 
coefficient in the cavity with axial clearance for 

G = 0.012 and Cw = −5929 

 

 
Fig. 18. Effect of radial distance ratio on moment 
coefficient in the cavity with radial clearance for 

G = 0.012 and Cw = −5929 
 
8.Conclusion 
 
In this study, the turbulent incompressible flow 
of water in a shrouded disk system with radial 
outflow is analyzed. This geometry can be 
utilized in the design of turbine cell 
hydrodynamic dynamometer. An axisymmetric 
numerical solution is used to analyze the flow. 
Experimental and numerical results of the 
cavity with axial outflow is used to validate the 
performed numerical method and selected 
turbulence model. Acceptable accuracy was 
observed comparing RNG k-ε turbulent model 
results with experiment. The flow structure is 
bachelor type with non-mixed rotor and stator 
boundary layers together with rotary core for 
weak superimposed flow rate. Rotating core 
gradually disappears with increasing the 
imposed flow rate, and flow structure becomes 
Stewartson type. In this case, the tangential 
velocity of flow is negligible and the radial 
velocity is positive everywhere in the cavity. 
Moreover, moment coefficient of rotating disk 
shows an increasing trend. By increasing the 
Reynolds number, the radial component of 
flow velocity inside the stator boundary layer 
is directed centripetal and the flow core again 
reappears. Moment coefficient of rotating disk 
increases with increasing clearance between 
shrouded stator and rotor and decreases with 
increasing axial clearance.  
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